Comparison of Spacecraft Charging Environments at the Earth, Jupiter, and Saturn

نویسندگان

  • Henry B. Garrett
  • Alan R. Hoffman
چکیده

Studies of the Earth with the ATS-5, ATS-6, and SCATHA spacecraft led to the development of several simple tools for predicting the potentials to be expected on a spacecraft in the space environment. These tools have been used to estimate the expected levels of worst case charging at Jupiter and Saturn for the Galileo and the Cassini spacecraft missions. This paper reviews those results and puts them in the context of the design issues addressed by each mission including the spacecraft design mitigation strategies adopted to limit differential charging. The model shows that shadowed surfaces in Earth orbit can reach 25 kV or higher in worst case environments. For Galileo, spacecraft-to-space potentials of 900 V were predicted in shadow. Since such potentials could produce possible discharges and could effect low energy plasma measurements, the outer surface of Galileo was designed to rigid conductivity requirements. Even though the surface of Galileo is not entirely conducting, after 27 orbits no adverse effects due to surface charging aside from limited effects on low energy plasma measurements have been reported. The saturnian environment results in spacecraft potentials to space in shadow of 100 V or less. Although the overall surface of the Cassini spacecraft was not entirely conducting and grounded, it is shown that only in the most extreme conditions, is it expected that Cassini will experience any effects of surface charging at Saturn.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin.

We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensa...

متن کامل

A model of force balance in Saturn’s magnetodisc

We present calculations of magnetic potential functions associated with the perturbation of Saturn’s planetary magnetic field by a rotating, equatorially-situated disc of plasma. Such structures are central to the dynamics of the rapidly rotating magnetospheres of Saturn and Jupiter. They are ‘fed’ internally by sources of plasma from moons such as Enceladus (Saturn) and Io (Jupiter). For these...

متن کامل

A search for X-ray emission from Saturn, Uranus and Neptune

We present an analysis of X-ray observations of the trans-Jovian planets Saturn, Uranus and Neptune with the ROSAT PSPC in comparison with X-ray observations of Jupiter. For the first time a marginal X-ray detection of Saturn was found and 95% confidence upper limits for Uranus and Neptune were obtained. These upper limits show that Jupiter-like X-ray luminosities can be excluded for all three ...

متن کامل

24 Saturn ’ s Exploration Beyond Cassini - Huygens

For its beautiful rings, active atmosphere and mysterious magnetic field, Saturn is a fascinating planet. It also holds some of the keys to understanding the formation of our Solar System and the evolution of giant planets in general. While the exploration by the Cassini-Huygens mission has led to great advances in our understanding of the planet and its moons, it has left us with puzzling ques...

متن کامل

Stronautical Maneuver Design for the (!bdb Veeg.a Trajectory Aas/aiaa Astrodynamics Specialist Conference Maneuver Design for the (b&m Veega Trajectory

After nearly four years of space flight, the Galileo spacecraft is finally on a direct trajectory to its final destination, Jupiter. It has taken three planetary gravity assists to achieve the energy necessary for Galileo to reach Jupiter. This Venus-Earth-Earth gravity assist route is referred to as the VEEGA trajectory. Each gravity assist required precise spacecraft delivery to the proper ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008